Introduction

Mass wasting is the downslope movement of material under the direct influence of gravity. The rate of movement varies greatly.

While landslides are a normal part of erosion and surface processes, they can be very destructive to life and property.

Mass wasting occurs when the gravitational force acting on a slope exceeds the resisting force.

Large slope angles have a greater chance for mass wasting.

The steepest angle that a slope can maintain without failure is the angle of repose.

What Factors Influence Mass Wasting?

Slope angle
- Stream undercutting or wave erosion can oversteepen slopes
- Excavation for road and hillside construction is a common and similar problem

Weathering and Climate
- Mass wasting is more common in loose or poorly consolidated material than in bedrock
- In areas of high temperature and precipitation, weathering is deeper and produces tens of meters of unconsolidated material
- In arid regions soils are thinner, but heavy localized rainfall may result in mudflows
What Factors Influence Mass Wasting?

- Water content
 - Water may increase the weight of a slope enough to induce failure
 - Water reduces the amount of friction between particles
 - Because clay particles are platy and slide easily past one another when wet, clay beds are often the layers on which overlying rock units slide

- Vegetation
 - Decreases water content of slope materials
 - Root systems stabilize by binding soil and holding the soil to bedrock
 - Removal of vegetation can lead to mass wasting

What Factors Influence Mass Wasting?

- Overloading
 - Caused by human activities of dumping or piling material onto a slope, increasing water pressure and decreasing shear strength

- Geology and Slope Stability
 - When slope and dip direction is the same, mass wasting is more likely to occur
 - Joints may dip in the same direction as the slope, also increasing the chance for mass wasting

What Are the Different Types of Mass Wasting?

- Classified on the basis of:
 - Rate of movement - fast or slow
 - Type of movement - falling, sliding, or flowing
 - Type of material - rock, soil, and debris

- Rapid movements involve visible movements of material
- Slow movements are imperceptible except from their effects such as cracked walls and tilted trees or power poles

What Are the Different Types of Mass Wasting?

- Falls
 - Rockfalls are a common type of rapid mass wasting
 - May occur along steep canyons, cliffs, and road cuts
 - Talus builds up at the base, where fallen material collects
 - Failure along joints or bedding planes may be caused by undercutting, earthquakes, or frost wedging

- Slides - slumps and block
 - Move along one or more surfaces of failure
 - May consist of soil, rock, or both
 - May move rapidly or slowly
 - Slumps involve movement along a curved surface
 - Rock or block slides move along a planar surface, often where dip is the same as slope direction
What Are the Different Types of Mass Wasting?

- *mudflows are fluid and move fastest, common in arid or mountainous regions
- *debris flows are more viscous
- *earthflows move as thick, viscous masses of wet regolith

Flows move as a viscous fluid or show plastic movement

Mudflows

- Consist of at least 50% silt and clay sized particles, at least 30% water
- Usually follow pre-existing channels until the slope decreases, then fan out

Debris flows

- Composed of larger sized particles than mudflows
- Don’t contain as much water as mudflows
- Rarely confined to pre-existing channels

Earthflows

- Slumps from the upper part of a hillside
- Occur most commonly in humid climates

Quickclays

- Spontaneous liquefaction and rapid flow of fine silt and clay
- Original pore space was filled with salt water and ionic bonds strengthened the clay particle attraction
- Salt water flushed out, clays lose cohesion, and sudden movement liquefies

Solifluction

- The slow downslope movement of water-saturated surface sediment
- Most common in areas of permafrost
Creep
- Slowest type of flow, most common in humid climates such as the southeastern US
- Extremely destructive over time; difficult to recognize or control

Complex Movements
- Occurs when several of the recognized types are involved in a mass movement
 - slide-flow
 - debris avalanche

Recognizing and Minimizing the Effects of Mass Movements
- Conduct a thorough geologic investigation of the area in question
- Assess risks and take steps to minimize the effects of events

Recognizing and Minimizing the Effects of Mass Movements
- Slope stability maps indicate where to place roads, developments, and utility lines
- Drainage of high areas or other water control measures helps prevent movement

Recognizing and Minimizing the Effects of Mass Movements
- Reducing the angle of slope using cut-and-fill or benching
- Retaining walls and drainage pipe
- Rock bolts hold unstable surface rock to solid bedrock